Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.
نویسندگان
چکیده
Vascular functions, including tissue perfusion and peripheral resistance, reflect continuous structural adaptation (remodeling) of blood vessels in response to several stimuli. Here, a theoretical model is presented that relates the structural and functional properties of microvascular networks to the adaptive responses of individual segments to hemodynamic and metabolic stimuli. All vessels are assumed to respond, according to a common set of adaptation rules, to changes in wall shear stress, circumferential wall stress, and tissue metabolic status (indicated by partial pressure of oxygen). An increase in vessel diameter with increasing wall shear stress and an increase in wall mass with increased circumferential stress are needed to ensure stable vascular adaptation. The model allows quantitative predictions of the effects of changes in systemic hemodynamic conditions or local adaptation characteristics on vessel structure and on peripheral resistance. Predicted effects of driving pressure on the ratio of wall thickness to vessel diameter are consistent with experimental observations. In addition, peripheral resistance increases by approximately 65% for an increase in driving pressure from 50 to 150 mm Hg. Peripheral resistance is predicted to be markedly increased in response to a decrease in vascular sensitivity to wall shear stress, and to be decreased in response to increased tissue metabolic demand. This theoretical approach provides a framework for integrating available information on structural remodeling in the vascular system and predicting responses to changing conditions or altered vascular reactivity, as may occur in hypertension.
منابع مشابه
Flow-dependent remodeling of small arteries: the stimuli and the sensors are (still) in question.
From the embryonic state to the end of life, the elements of the circulatory system are exposed to hemodynamic forces associated with the circulation of blood. Various levels of intraluminal (transmural) pressure and wall shear stress represent the natural environment for the tissues of the vascular wall. Physiological or pathological changes in the level of these forces elicit active responses...
متن کاملStability of a microvessel subject to structural adaptation of diameter and wall thickness.
Vascular adaptation--or structural changes of microvessels in response to physical and metabolic stresses--can influence physiological processes like angiogenesis and hypertension. To better understand the influence of these stresses on adaptation, Pries et al. (1998, 2001a,b, 2005) have developed a computational model for microvascular adaptation. Here, we reformulate this model in a way that ...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملStructural Adaptation and Heterogeneity of Normal and Tumor Microvascular Networks
Relative to normal tissues, tumor microcirculation exhibits high structural and functional heterogeneity leading to hypoxic regions and impairing treatment efficacy. Here, computational simulations of blood vessel structural adaptation are used to explore the hypothesis that abnormal adaptive responses to local hemodynamic and metabolic stimuli contribute to aberrant morphological and hemodynam...
متن کاملStructural remodeling of mouse gracilis artery after chronic alteration in blood supply.
The goals of this study were to determine the time course and spatial dependence of structural diameter changes in the mouse gracilis artery after a redistribution of blood flow and to compare the observations with predictions of computational models for structural adaptation. Diameters were measured 1, 2, 7, 14, 21, 28, and 56 days after resection of one of the two blood supplies to the artery...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 46 4 شماره
صفحات -
تاریخ انتشار 2005